Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CASICT Tibetan Word Segmentation System for MLWS2017 (1710.06112v1)

Published 17 Oct 2017 in cs.CL

Abstract: We participated in the MLWS 2017 on Tibetan word segmentation task, our system is trained in a unrestricted way, by introducing a baseline system and 76w tibetan segmented sentences of ours. In the system character sequence is processed by the baseline system into word sequence, then a subword unit (BPE algorithm) split rare words into subwords with its corresponding features, after that a neural network classifier is adopted to token each subword into "B,M,E,S" label, in decoding step a simple rule is used to recover a final word sequence. The candidate system for submition is selected by evaluating the F-score in dev set pre-extracted from the 76w sentences. Experiment shows that this method can fix segmentation errors of baseline system and result in a significant performance gain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube