Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Variance Reduction for Policy Gradient Estimation (1710.06034v4)

Published 17 Oct 2017 in cs.LG and stat.ML

Abstract: Recent advances in policy gradient methods and deep learning have demonstrated their applicability for complex reinforcement learning problems. However, the variance of the performance gradient estimates obtained from the simulation is often excessive, leading to poor sample efficiency. In this paper, we apply the stochastic variance reduced gradient descent (SVRG) to model-free policy gradient to significantly improve the sample-efficiency. The SVRG estimation is incorporated into a trust-region Newton conjugate gradient framework for the policy optimization. On several Mujoco tasks, our method achieves significantly better performance compared to the state-of-the-art model-free policy gradient methods in robotic continuous control such as trust region policy optimization (TRPO)

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.