Potential Conditional Mutual Information: Estimators, Properties and Applications (1710.05012v1)
Abstract: The conditional mutual information I(X;Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems. In several applications, it is desirable to have a functional purely of the conditional distribution p_{Y|X,Z} rather than of the joint distribution p_{X,Y,Z}. We define the potential conditional mutual information as the conditional mutual information calculated with a modified joint distribution p_{Y|X,Z} q_{X,Z}, where q_{X,Z} is a potential distribution, fixed airport. We develop K nearest neighbor based estimators for this functional, employing importance sampling, and a coupling trick, and prove the finite k consistency of such an estimator. We demonstrate that the estimator has excellent practical performance and show an application in dynamical system inference.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.