Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Parallel Solution of Sparse Triangular Linear Systems in CUDA (1710.04985v1)

Published 13 Oct 2017 in cs.MS

Abstract: The acceleration of sparse matrix computations on modern many-core processors, such as the graphics processing units (GPUs), has been recognized and studied over a decade. Significant performance enhancements have been achieved for many sparse matrix computational kernels such as sparse matrix-vector products and sparse matrix-matrix products. Solving linear systems with sparse triangular structured matrices is another important sparse kernel as demanded by a variety of scientific and engineering applications such as sparse linear solvers. However, the development of efficient parallel algorithms in CUDA for solving sparse triangular linear systems remains a challenging task due to the inherently sequential nature of the computation. In this paper, we will revisit this problem by reviewing the existing level-scheduling methods and proposing algorithms with self-scheduling techniques. Numerical results have indicated that the CUDA implementations of the proposed algorithms can outperform the state-of-the-art solvers in cuSPARSE by a factor of up to $2.6$ for structured model problems and general sparse matrices.

Citations (9)

Summary

We haven't generated a summary for this paper yet.