Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse Weighted Canonical Correlation Analysis (1710.04792v1)

Published 13 Oct 2017 in cs.LG and stat.ML

Abstract: Given two data matrices $X$ and $Y$, sparse canonical correlation analysis (SCCA) is to seek two sparse canonical vectors $u$ and $v$ to maximize the correlation between $Xu$ and $Yv$. However, classical and sparse CCA models consider the contribution of all the samples of data matrices and thus cannot identify an underlying specific subset of samples. To this end, we propose a novel sparse weighted canonical correlation analysis (SWCCA), where weights are used for regularizing different samples. We solve the $L_0$-regularized SWCCA ($L_0$-SWCCA) using an alternating iterative algorithm. We apply $L_0$-SWCCA to synthetic data and real-world data to demonstrate its effectiveness and superiority compared to related methods. Lastly, we consider also SWCCA with different penalties like LASSO (Least absolute shrinkage and selection operator) and Group LASSO, and extend it for integrating more than three data matrices.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.