Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensionality Reduction Ensembles (1710.04484v1)

Published 11 Oct 2017 in stat.ML and stat.AP

Abstract: Ensemble learning has had many successes in supervised learning, but it has been rare in unsupervised learning and dimensionality reduction. This study explores dimensionality reduction ensembles, using principal component analysis and manifold learning techniques to capture linear, nonlinear, local, and global features in the original dataset. Dimensionality reduction ensembles are tested first on simulation data and then on two real medical datasets using random forest classifiers; results suggest the efficacy of this approach, with accuracies approaching that of the full dataset. Limitations include computational cost of some algorithms with strong performance, which may be ameliorated through distributed computing and the development of more efficient versions of these algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.