Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Automatic Salient Object Detection for Panoramic Images Using Region Growing and Fixation Prediction Model (1710.04071v6)

Published 10 Oct 2017 in cs.CV

Abstract: Almost all previous works on saliency detection have been dedicated to conventional images, however, with the outbreak of panoramic images due to the rapid development of VR or AR technology, it is becoming more challenging, meanwhile valuable for extracting salient contents in panoramic images. In this paper, we propose a novel bottom-up salient object detection framework for panoramic images. First, we employ a spatial density estimation method to roughly extract object proposal regions, with the help of region growing algorithm. Meanwhile, an eye fixation model is utilized to predict visually attractive parts in the image from the perspective of the human visual search mechanism. Then, the previous results are combined by the maxima normalization to get the coarse saliency map. Finally, a refinement step based on geodesic distance is utilized for post-processing to derive the final saliency map. To fairly evaluate the performance of the proposed approach, we propose a high-quality dataset of panoramic images (SalPan). Extensive evaluations demonstrate the effectiveness of our proposed method on panoramic images and the superiority of the proposed method against other methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.