Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis of Dropout for Matrix Factorization (1710.03487v1)

Published 10 Oct 2017 in cs.LG and stat.ML

Abstract: Dropout is a simple yet effective algorithm for regularizing neural networks by randomly dropping out units through Bernoulli multiplicative noise, and for some restricted problem classes, such as linear or logistic regression, several theoretical studies have demonstrated the equivalence between dropout and a fully deterministic optimization problem with data-dependent Tikhonov regularization. This work presents a theoretical analysis of dropout for matrix factorization, where Bernoulli random variables are used to drop a factor, thereby attempting to control the size of the factorization. While recent work has demonstrated the empirical effectiveness of dropout for matrix factorization, a theoretical understanding of the regularization properties of dropout in this context remains elusive. This work demonstrates the equivalence between dropout and a fully deterministic model for matrix factorization in which the factors are regularized by the sum of the product of the norms of the columns. While the resulting regularizer is closely related to a variational form of the nuclear norm, suggesting that dropout may limit the size of the factorization, we show that it is possible to trivially lower the objective value by doubling the size of the factorization. We show that this problem is caused by the use of a fixed dropout rate, which motivates the use of a rate that increases with the size of the factorization. Synthetic experiments validate our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.