Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Personalized Saliency and its Prediction (1710.03011v2)

Published 9 Oct 2017 in cs.CV

Abstract: Nearly all existing visual saliency models by far have focused on predicting a universal saliency map across all observers. Yet psychology studies suggest that visual attention of different observers can vary significantly under specific circumstances, especially a scene is composed of multiple salient objects. To study such heterogenous visual attention pattern across observers, we first construct a personalized saliency dataset and explore correlations between visual attention, personal preferences, and image contents. Specifically, we propose to decompose a personalized saliency map (referred to as PSM) into a universal saliency map (referred to as USM) predictable by existing saliency detection models and a new discrepancy map across users that characterizes personalized saliency. We then present two solutions towards predicting such discrepancy maps, i.e., a multi-task convolutional neural network (CNN) framework and an extended CNN with Person-specific Information Encoded Filters (CNN-PIEF). Extensive experimental results demonstrate the effectiveness of our models for PSM prediction as well their generalization capability for unseen observers.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.