Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Smarnet: Teaching Machines to Read and Comprehend Like Human (1710.02772v1)

Published 8 Oct 2017 in cs.CL and cs.IR

Abstract: Machine Comprehension (MC) is a challenging task in Natural Language Processing field, which aims to guide the machine to comprehend a passage and answer the given question. Many existing approaches on MC task are suffering the inefficiency in some bottlenecks, such as insufficient lexical understanding, complex question-passage interaction, incorrect answer extraction and so on. In this paper, we address these problems from the viewpoint of how humans deal with reading tests in a scientific way. Specifically, we first propose a novel lexical gating mechanism to dynamically combine the words and characters representations. We then guide the machines to read in an interactive way with attention mechanism and memory network. Finally we add a checking layer to refine the answer for insurance. The extensive experiments on two popular datasets SQuAD and TriviaQA show that our method exceeds considerable performance than most state-of-the-art solutions at the time of submission.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.