Papers
Topics
Authors
Recent
2000 character limit reached

Learning Word Embeddings for Hyponymy with Entailment-Based Distributional Semantics (1710.02437v1)

Published 6 Oct 2017 in cs.CL

Abstract: Lexical entailment, such as hyponymy, is a fundamental issue in the semantics of natural language. This paper proposes distributional semantic models which efficiently learn word embeddings for entailment, using a recently-proposed framework for modelling entailment in a vector-space. These models postulate a latent vector for a pseudo-phrase containing two neighbouring word vectors. We investigate both modelling words as the evidence they contribute about this phrase vector, or as the posterior distribution of a one-word phrase vector, and find that the posterior vectors perform better. The resulting word embeddings outperform the best previous results on predicting hyponymy between words, in unsupervised and semi-supervised experiments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.