Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Preferential Attachment and Vertex Arrival Times (1710.02159v1)

Published 5 Oct 2017 in math.PR, cs.SI, math.ST, physics.soc-ph, and stat.TH

Abstract: We study preferential attachment mechanisms in random graphs that are parameterized by (i) a constant bias affecting the degree-biased distribution on the vertex set and (ii) the distribution of times at which new vertices are created by the model. The class of random graphs so defined admits a representation theorem reminiscent of residual allocation, or "stick-breaking" schemes. We characterize how the vertex arrival times affect the asymptotic degree distribution, and relate the latter to neutral-to-the-left processes. Our random graphs generate edges "one end at a time", which sets up a one-to-one correspondence between random graphs and random partitions of natural numbers; via this map, our representation induces a result on (not necessarily exchangeable) random partitions that generalizes a theorem of Griffiths and Span\'o. A number of examples clarify how the class intersects with several known random graph models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.