Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved Schemes for Asymptotically Optimal Repair of MDS Codes (1710.01867v3)

Published 5 Oct 2017 in cs.IT and math.IT

Abstract: We consider $(n,k,l)$ MDS codes of length $n$, dimension $k$, and subpacketization $l$ over a finite field $\mathbb{F}$. A codeword of such a code consists of $n$ column-vectors of length $l$ over $\mathbb{F}$, with the property that any $k$ of them suffice to recover the entire codeword. Each of these $n$ vectors may be stored on a separate node in a network. If one of the $n$ nodes fails, we can recover its content by downloading symbols from the surviving nodes, and the total number of symbols downloaded in the worst case is called the repair bandwidth of the code. By the cut-set bound, the repair bandwidth of an $(n,k,l)$ MDS code is at least $l(n{-}1)/(n{-}k)$. There are several constructions of MDS codes whose repair bandwidth meets or asymptotically meets the cut-set bound. For example, Ye and Barg constructed $(n,k,r{n})$ Reed--Solomon codes that asymptotically meet the cut-set bound, where $r = n-k$. Ye and Barg also constructed optimal-bandwidth and optimal-update $(n,k,r{n})$ MDS codes. Wang, Tamo, and Bruck constructed optimal-bandwidth $(n, k, r{n/(r+1)})$ MDS codes, and these codes have the smallest known subpacketization for optimal-bandwidth MDS codes. A key idea in all these constructions is to represent certain integers in base $r$. We show how this technique can be refined to improve the subpacketization of the two MDS code constructions by Ye and Barg, while achieving asymptotically optimal repair bandwidth. Specifically, when $r=s{m}$ for an integer $s$,we obtain an $(n,k,s{m+n-1})$ Reed--Solomon code and an optimal-update $(n,k,s{m+n-1})$ MDS code, both having asymptotically optimal repair bandwidth. We also present an extension of this idea to reduce the subpacketization of the Wang--Tamo--Bruck construction while achieving a repair-by-transfer scheme with asymptotically optimal repair bandwidth.

Citations (32)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.