Papers
Topics
Authors
Recent
2000 character limit reached

Computing Approximate Pure Nash Equilibria in Shapley Value Weighted Congestion Games (1710.01634v2)

Published 4 Oct 2017 in cs.GT

Abstract: We study the computation of approximate pure Nash equilibria in Shapley value (SV) weighted congestion games, introduced in [19]. This class of games considers weighted congestion games in which Shapley values are used as an alternative (to proportional shares) for distributing the total cost of each resource among its users. We focus on the interesting subclass of such games with polynomial resource cost functions and present an algorithm that computes approximate pure Nash equilibria with a polynomial number of strategy updates. Since computing a single strategy update is hard, we apply sampling techniques which allow us to achieve polynomial running time. The algorithm builds on the algorithmic ideas of [7], however, to the best of our knowledge, this is the first algorithmic result on computation of approximate equilibria using other than proportional shares as player costs in this setting. We present a novel relation that approximates the Shapley value of a player by her proportional share and vice versa. As side results, we upper bound the approximate price of anarchy of such games and significantly improve the best known factor for computing approximate pure Nash equilibria in weighted congestion games of [7].

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube