Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Spectral estimation of the percolation transition in clustered networks (1710.01592v1)

Published 4 Oct 2017 in physics.soc-ph, cond-mat.dis-nn, cond-mat.stat-mech, cs.CY, and stat.ML

Abstract: There have been several spectral bounds for the percolation transition in networks, using spectrum of matrices associated with the network such as the adjacency matrix and the non-backtracking matrix. However they are far from being tight when the network is sparse and displays clustering or transitivity, which is represented by existence of short loops e.g. triangles. In this work, for the bond percolation, we first propose a message passing algorithm for calculating size of percolating clusters considering effects of triangles, then relate the percolation transition to the leading eigenvalue of a matrix that we name the triangle-non-backtracking matrix, by analyzing stability of the message passing equations. We establish that our method gives a tighter lower-bound to the bond percolation transition than previous spectral bounds, and it becomes exact for an infinite network with no loops longer than 3. We evaluate numerically our methods on synthetic and real-world networks, and discuss further generalizations of our approach to include higher-order sub-structures.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)