Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Progressive Color Transfer with Dense Semantic Correspondences (1710.00756v2)

Published 2 Oct 2017 in cs.CV

Abstract: We propose a new algorithm for color transfer between images that have perceptually similar semantic structures. We aim to achieve a more accurate color transfer that leverages semantically-meaningful dense correspondence between images. To accomplish this, our algorithm uses neural representations for matching. Additionally, the color transfer should be spatially variant and globally coherent. Therefore, our algorithm optimizes a local linear model for color transfer satisfying both local and global constraints. Our proposed approach jointly optimizes matching and color transfer, adopting a coarse-to-fine strategy. The proposed method can be successfully extended from one-to-one to one-to-many color transfer. The latter further addresses the problem of mismatching elements of the input image. We validate our proposed method by testing it on a large variety of image content.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.