Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dynamic Time-Aware Attention to Speaker Roles and Contexts for Spoken Language Understanding (1710.00165v2)

Published 30 Sep 2017 in cs.CL

Abstract: Spoken language understanding (SLU) is an essential component in conversational systems. Most SLU component treats each utterance independently, and then the following components aggregate the multi-turn information in the separate phases. In order to avoid error propagation and effectively utilize contexts, prior work leveraged history for contextual SLU. However, the previous model only paid attention to the content in history utterances without considering their temporal information and speaker roles. In the dialogues, the most recent utterances should be more important than the least recent ones. Furthermore, users usually pay attention to 1) self history for reasoning and 2) others' utterances for listening, the speaker of the utterances may provides informative cues to help understanding. Therefore, this paper proposes an attention-based network that additionally leverages temporal information and speaker role for better SLU, where the attention to contexts and speaker roles can be automatically learned in an end-to-end manner. The experiments on the benchmark Dialogue State Tracking Challenge 4 (DSTC4) dataset show that the time-aware dynamic role attention networks significantly improve the understanding performance.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.