Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Indonesian Speech-Emotion Automatic Recognition (I-SpEAR) (1709.10460v1)

Published 25 Sep 2017 in cs.HC

Abstract: Even though speech-emotion recognition (SER) has been receiving much attention as research topic, there are still some disputes about which vocal features can identify certain emotion. Emotion expression is also known to be differed according to the cultural backgrounds that make it important to study SER specific to the culture where the language belongs to. Furthermore, only a few studies addresses the SER in Indonesian which what this study attempts to explore. In this study, we extract simple features from 3420 voice data gathered from 38 participants. The features are compared by means of linear mixed effect model which shows that people who are in emotional and non-emotional state can be differentiated by their speech duration. Using SVM and speech duration as input feature, we achieve 76.84% average accuracy in classifying emotional and non-emotional speech.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.