Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling (1709.10432v1)

Published 29 Sep 2017 in stat.ML and cs.LG

Abstract: When using stochastic gradient descent to solve large-scale machine learning problems, a common practice of data processing is to shuffle the training data, partition the data across multiple machines if needed, and then perform several epochs of training on the re-shuffled (either locally or globally) data. The above procedure makes the instances used to compute the gradients no longer independently sampled from the training data set. Then does the distributed SGD method have desirable convergence properties in this practical situation? In this paper, we give answers to this question. First, we give a mathematical formulation for the practical data processing procedure in distributed machine learning, which we call data partition with global/local shuffling. We observe that global shuffling is equivalent to without-replacement sampling if the shuffling operations are independent. We prove that SGD with global shuffling has convergence guarantee in both convex and non-convex cases. An interesting finding is that, the non-convex tasks like deep learning are more suitable to apply shuffling comparing to the convex tasks. Second, we conduct the convergence analysis for SGD with local shuffling. The convergence rate for local shuffling is slower than that for global shuffling, since it will lose some information if there's no communication between partitioned data. Finally, we consider the situation when the permutation after shuffling is not uniformly distributed (insufficient shuffling), and discuss the condition under which this insufficiency will not influence the convergence rate. Our theoretical results provide important insights to large-scale machine learning, especially in the selection of data processing methods in order to achieve faster convergence and good speedup. Our theoretical findings are verified by extensive experiments on logistic regression and deep neural networks.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.