Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Preconditioners for Saddle Point Problems on Truncated Domains in Phase Separation Modelling (1709.10339v3)

Published 28 Sep 2017 in cs.NA

Abstract: The discretization of Cahn-Hilliard equation with obstacle potential leads to a block 2 by 2 non-linear system, where the p1, 1q block has a non-linear and non-smooth term. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this non-linear system. The solver may be seen as an inexact Uzawa method which has the falvour of an active set method in the sense that the active sets are first identified by solving a quadratic obstacle problem corresponding to the p1, 1q block of the block 2 by 2 nonlinear system, and a new decent direction is obtained after discarding the active set region. The problem becomes linear on nonactive set, and corresponds to solving a linear saddle point problem on truncated domains. For solving the quadratic obstacle problem, various optimal multigrid like methods have been proposed. In this paper solvers for the truncated saddle point problem is considered. Three preconditioners are considered, two of them have block diagonal structure, and the third one has block tridiagonal structure. One of the block diagonal preconditioners is obtained by adding certain scaling of stiffness and mass matrices, whereas, the remaining two involves Schur complement. Eigenvalue bound and condition number estimates are derived for the preconditioned untruncated problem. It is shown that the extreme eigenvalues of the preconditioned truncated system remain bounded by the extreme eigenvalues of the preconditioned untruncated system. Numerical experiments confirm the optimality of the solvers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.