Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Computation of Graph Edit Distance (1709.10305v1)

Published 29 Sep 2017 in cs.DS

Abstract: The graph edit distance (GED) is a well-established distance measure widely used in many applications. However, existing methods for the GED computation suffer from several drawbacks including oversized search space, huge memory consumption, and lots of expensive backtracking. In this paper, we present BSS_GED, a novel vertex-based mapping method for the GED computation. First, we create a small search space by reducing the number of invalid and redundant mappings involved in the GED computation. Then, we utilize beam-stack search combined with two heuristics to efficiently compute GED, achieving a flexible trade-off between available memory and expensive backtracking. Extensive experiments demonstrate that BSS GED is highly efficient for the GED computation on sparse as well as dense graphs and outperforms the state-of-the-art GED methods. In addition, we also apply BSS_GED to the graph similarity search problem and the practical results confirm its efficiency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube