Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Shapley Facility Location Games (1709.10278v2)

Published 29 Sep 2017 in cs.GT

Abstract: Facility location games have been a topic of major interest in economics, operations research and computer science, starting from the seminal work by Hotelling. Spatial facility location models have successfully predicted the outcome of competition in a variety of scenarios. In a typical facility location game, users/customers/voters are mapped to a metric space representing their preferences, and each player picks a point (facility) in that space. In most facility location games considered in the literature, users are assumed to act deterministically: given the facilities chosen by the players, users are attracted to their nearest facility. This paper introduces facility location games with probabilistic attraction, dubbed Shapley facility location games, due to a surprising connection to the Shapley value. The specific attraction function we adopt in this model is aligned with the recent findings of the behavioral economics literature on choice prediction. Given this model, our first main result is that Shapley facility location games are potential games; hence, they possess pure Nash equilibrium. Moreover, the latter is true for any compact user space, any user distribution over that space, and any number of players. Note that this is in sharp contrast to Hotelling facility location games. In our second main result we show that under the assumption that players can compute an approximate best response, approximate equilibrium profiles can be learned efficiently by the players via dynamics. Our third main result is a bound on the Price of Anarchy of this class of games, as well as showing the bound is tight. Ultimately, we show that player payoffs coincide with their Shapley value in a coalition game, where coalition gains are the social welfare of the users.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.