Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations (1709.10276v1)

Published 29 Sep 2017 in cs.NA and stat.ML

Abstract: We consider the problem of online subspace tracking of a partially observed high-dimensional data stream corrupted by noise, where we assume that the data lie in a low-dimensional linear subspace. This problem is cast as an online low-rank tensor completion problem. We propose a novel online tensor subspace tracking algorithm based on the CANDECOMP/PARAFAC (CP) decomposition, dubbed OnLine Low-rank Subspace tracking by TEnsor CP Decomposition (OLSTEC). The proposed algorithm especially addresses the case in which the subspace of interest is dynamically time-varying. To this end, we build up our proposed algorithm exploiting the recursive least squares (RLS), which is the second-order gradient algorithm. Numerical evaluations on synthetic datasets and real-world datasets such as communication network traffic, environmental data, and surveillance videos, show that the proposed OLSTEC algorithm outperforms state-of-the-art online algorithms in terms of the convergence rate per iteration.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)