Papers
Topics
Authors
Recent
2000 character limit reached

A Simple and Fast Algorithm for L1-norm Kernel PCA (1709.10152v2)

Published 28 Sep 2017 in stat.ML and cs.LG

Abstract: We present an algorithm for L1-norm kernel PCA and provide a convergence analysis for it. While an optimal solution of L2-norm kernel PCA can be obtained through matrix decomposition, finding that of L1-norm kernel PCA is not trivial due to its non-convexity and non-smoothness. We provide a novel reformulation through which an equivalent, geometrically interpretable problem is obtained. Based on the geometric interpretation of the reformulated problem, we present a fixed-point type algorithm that iteratively computes a binary weight for each observation. As the algorithm requires only inner products of data vectors, it is computationally efficient and the kernel trick is applicable. In the convergence analysis, we show that the algorithm converges to a local optimal solution in a finite number of steps. Moreover, we provide a rate of convergence analysis, which has been never done for any L1-norm PCA algorithm, proving that the sequence of objective values converges at a linear rate. In numerical experiments, we show that the algorithm is robust in the presence of entry-wise perturbations and computationally scalable, especially in a large-scale setting. Lastly, we introduce an application to outlier detection where the model based on the proposed algorithm outperforms the benchmark algorithms.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.