Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adding successor: A transfer theorem for separation and covering (1709.10052v1)

Published 28 Sep 2017 in cs.FL

Abstract: Given a class C of word languages, the C-separation problem asks for an algorithm that, given as input two regular languages, decides whether there exists a third language in C containing the first language, while being disjoint from the second. Separation is usually investigated as a means to obtain a deep understanding of the class C. In the paper, we are mainly interested in classes defined by logical formalisms. Such classes are often built on top of each other: given some logic, one builds a stronger one by adding new predicates to its signature. A natural construction is to enrich a logic with the successor relation. In this paper, we present a transfer result applying to this construction: we show that for suitable logically defined classes, separation for the logic enriched with the successor relation reduces to separation for the original logic. Our theorem also applies to a problem that is stronger than separation: covering. Moreover, we actually present two reductions: one for languages of finite words and the other for languages of infinite words.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.