Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint (1709.09767v3)

Published 28 Sep 2017 in cs.DS

Abstract: We consider the problem of maximizing a monotone submodular function subject to a knapsack constraint. Our main contribution is an algorithm that achieves a nearly-optimal, $1 - 1/e - \epsilon$ approximation, using $(1/\epsilon){O(1/\epsilon4)} n \log2{n}$ function evaluations and arithmetic operations. Our algorithm is impractical but theoretically interesting, since it overcomes a fundamental running time bottleneck of the multilinear extension relaxation framework. This is the main approach for obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads to $\Omega(n2)$ running times, since evaluating the multilinear extension is expensive. Our algorithm maintains a fractional solution with only a constant number of entries that are strictly fractional, which allows us to overcome this obstacle.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)