Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimating a Separably-Markov Random Field (SMuRF) from Binary Observations (1709.09723v1)

Published 27 Sep 2017 in stat.ME and cs.CE

Abstract: A fundamental problem in neuroscience is to characterize the dynamics of spiking from the neurons in a circuit that is involved in learning about a stimulus or a contingency. A key limitation of current methods to analyze neural spiking data is the need to collapse neural activity over time or trials, which may cause the loss of information pertinent to understanding the function of a neuron or circuit. We introduce a new method that can determine not only the trial-to-trial dynamics that accompany the learning of a contingency by a neuron, but also the latency of this learning with respect to the onset of a conditioned stimulus. The backbone of the method is a separable two-dimensional (2D) random field (RF) model of neural spike rasters, in which the joint conditional intensity function of a neuron over time and trials depends on two latent Markovian state sequences that evolve separately but in parallel. Classical tools to estimate state-space models cannot be applied readily to our 2D separable RF model. We develop efficient statistical and computational tools to estimate the parameters of the separable 2D RF model. We apply these to data collected from neurons in the pre-frontal cortex (PFC) in an experiment designed to characterize the neural underpinnings of the associative learning of fear in mice. Overall, the separable 2D RF model provides a detailed, interpretable, characterization of the dynamics of neural spiking that accompany the learning of a contingency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube