Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Lower Bounds on the Bayes Risk of the Bayesian BTL Model with Applications to Comparison Graphs (1709.09676v4)

Published 27 Sep 2017 in cs.IT, cs.LG, and math.IT

Abstract: We consider the problem of aggregating pairwise comparisons to obtain a consensus ranking order over a collection of objects. We use the popular Bradley-Terry-Luce (BTL) model which allows us to probabilistically describe pairwise comparisons between objects. In particular, we employ the Bayesian BTL model which allows for meaningful prior assumptions and to cope with situations where the number of objects is large and the number of comparisons between some objects is small or even zero. For the conventional Bayesian BTL model, we derive information-theoretic lower bounds on the Bayes risk of estimators for norm-based distortion functions. We compare the information-theoretic lower bound with the Bayesian Cram\'{e}r-Rao lower bound we derive for the case when the Bayes risk is the mean squared error. We illustrate the utility of the bounds through simulations by comparing them with the error performance of an expectation-maximization based inference algorithm proposed for the Bayesian BTL model. We draw parallels between pairwise comparisons in the BTL model and inter-player games represented as edges in a comparison graph and analyze the effect of various graph structures on the lower bounds. We also extend the information-theoretic and Bayesian Cram\'{e}r-Rao lower bounds to the more general Bayesian BTL model which takes into account home-field advantage.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.