Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the construction of converging hierarchies for polynomial optimization based on certificates of global positivity (1709.09307v2)

Published 27 Sep 2017 in math.OC, cs.CC, cs.DS, cs.SY, and math.AG

Abstract: In recent years, techniques based on convex optimization and real algebra that produce converging hierarchies of lower bounds for polynomial minimization problems have gained much popularity. At their heart, these hierarchies rely crucially on Positivstellens\"atze from the late 20th century (e.g., due to Stengle, Putinar, or Schm\"udgen) that certify positivity of a polynomial on an arbitrary closed basic semialgebraic set. In this paper, we show that such hierarchies could in fact be designed from much more limited Positivstellens\"atze dating back to the early 20th century that only certify positivity of a polynomial globally. More precisely, we show that any inner approximation to the cone of positive homogeneous polynomials that is arbitrarily tight can be turned into a converging hierarchy of lower bounds for general polynomial minimization problems with compact feasible sets. This in particular leads to a semidefinite programming-based hierarchy that relies solely on Artin's solution to Hilbert's 17th problem. We also use a classical result of Poly\'a on global positivity of even forms to construct an "optimization-free" converging hierarchy for general polynomial minimization problems. This hierarchy only requires polynomial multiplication and checking nonnegativity of coefficients of certain fixed polynomials. As a corollary, we obtain new linear programming and second-order cone programming-based hierarchies for polynomial minimization problems that rely on the recently introduced concepts of dsos and sdsos polynomials. We remark that the scope of this paper is theoretical at this stage as our hierarchies-though they involve at most two sum of squares constraints or only basic arithmetic at each level-require the use of bisection and increase the number of variables (resp. degree) of the problem by the number of inequality constraints plus three (resp. by a factor of two).

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.