Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local Structure Theorems for Erdos Renyi Graphs and their Algorithmic Application (1709.09152v2)

Published 26 Sep 2017 in cs.DM

Abstract: We analyze some local properties of sparse Erdos-Renyi graphs, where $d(n)/n$ is the edge probability. In particular we study the behavior of very short paths. For $d(n)=n{o(1)}$ we show that $G(n,d(n)/n)$ has asymptotically almost surely (a.a.s.~) bounded local treewidth and therefore is a.a.s.~nowhere dense. We also discover a new and simpler proof that $G(n,d/n)$ has a.a.s.~bounded expansion for constant~$d$. The local structure of sparse Erdos-Renyi Gaphs is very special: The $r$-neighborhood of a vertex is a tree with some additional edges, where the probability that there are $m$ additional edges decreases with~$m$. This implies efficient algorithms for subgraph isomorphism, in particular for finding subgraphs with small diameter. Finally we note that experiments suggest that preferential attachment graphs might have similar properties after deleting a small number of vertices.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube