Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks (1709.09103v1)

Published 26 Sep 2017 in cs.IT and math.IT

Abstract: Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable novel mobile applications, and the capability of providing massive access for Internet of Things (IoT) devices. However, such great promises come with formidable research challenges. To design and operate such complex networks with various types of resources, efficient and innovative methodologies will be needed. This motivates the recent introduction of highly structured and generalizable models for network optimization. In this article, we present some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, supported by various motivating applications. A special attention is paid on algorithmic approaches to deal with nonconvex objective functions and constraints, as well as computational scalability.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.