Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sensing-Constrained LQG Control (1709.08826v2)

Published 26 Sep 2017 in math.OC, cs.RO, cs.SY, eess.SY, and math.DS

Abstract: Linear-Quadratic-Gaussian (LQG) control is concerned with the design of an optimal controller and estimator for linear Gaussian systems with imperfect state information. Standard LQG assumes the set of sensor measurements, to be fed to the estimator, to be given. However, in many problems, arising in networked systems and robotics, one may not be able to use all the available sensors, due to power or payload constraints, or may be interested in using the smallest subset of sensors that guarantees the attainment of a desired control goal. In this paper, we introduce the sensing-constrained LQG control problem, in which one has to jointly design sensing, estimation, and control, under given constraints on the resources spent for sensing. We focus on the realistic case in which the sensing strategy has to be selected among a finite set of possible sensing modalities. While the computation of the optimal sensing strategy is intractable, we present the first scalable algorithm that computes a near-optimal sensing strategy with provable sub-optimality guarantees. To this end, we show that a separation principle holds, which allows the design of sensing, estimation, and control policies in isolation. We conclude the paper by discussing two applications of sensing-constrained LQG control, namely, sensing-constrained formation control and resource-constrained robot navigation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.