Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Widths of regular and context-free languages (1709.08696v5)

Published 25 Sep 2017 in cs.FL and cs.DM

Abstract: Given a partially-ordered finite alphabet $\Sigma$ and a language $L\subseteq \Sigma*$, how large can an antichain in $L$ be (where $L$ is given the lexicographic ordering)? More precisely, since $L$ will in general be infinite, we should ask about the rate of growth of maximum antichains consisting of words of length $n$. This fundamental property of partial orders is known as the width, and in a companion work we show that the problem of computing the information leakage permitted by a deterministic interactive system modeled as a finite-state transducer can be reduced to the problem of computing the width of a certain regular language. In this paper, we show that if $L$ is regular then there is a dichotomy between polynomial and exponential antichain growth. We give a polynomial-time algorithm to distinguish the two cases, and to compute the order of polynomial growth, with the language specified as an NFA. For context-free languages we show that there is a similar dichotomy, but now the problem of distinguishing the two cases is undecidable. Finally, we generalise the lexicographic order to tree languages, and show that for regular tree languages there is a trichotomy between polynomial, exponential and doubly exponential antichain growth.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)