Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Error Preserving Correction for CPD and Bounded-Norm CPD (1709.08349v1)

Published 25 Sep 2017 in cs.NA

Abstract: In CANDECOMP/PARAFAC tensor decomposition, degeneracy often occurs in some difficult scenarios, e.g., when the rank exceeds the tensor dimension, or when the loading components are highly collinear in several or all modes, or when CPD does not have an optimal solution. In such the cases, norms of some rank-1 terms become significantly large and cancel each other. This makes algorithms getting stuck in local minima while running a huge number of iterations does not improve the decomposition. In this paper, we propose an error preservation correction method to deal with such problem. Our aim is to seek a new tensor whose norms of rank-1 tensor components are minimised in an optimization problem, while it preserves the approximation error. An alternating correction algorithm and an all-atone algorithm have been developed for the problem. In addition, we propose a novel CPD with a bound constraint on a norm of the rank-one tensors. The method can be useful for decomposing tensors that cannot be analyzed by traditional algorithms, such as tensors corresponding to the matrix multiplication.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.