Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Comparison of Batch Normalization and Weight Normalization Algorithms for the Large-scale Image Classification (1709.08145v2)

Published 24 Sep 2017 in cs.CV

Abstract: Batch normalization (BN) has become a de facto standard for training deep convolutional networks. However, BN accounts for a significant fraction of training run-time and is difficult to accelerate, since it is a memory-bandwidth bounded operation. Such a drawback of BN motivates us to explore recently proposed weight normalization algorithms (WN algorithms), i.e. weight normalization, normalization propagation and weight normalization with translated ReLU. These algorithms don't slow-down training iterations and were experimentally shown to outperform BN on relatively small networks and datasets. However, it is not clear if these algorithms could replace BN in practical, large-scale applications. We answer this question by providing a detailed comparison of BN and WN algorithms using ResNet-50 network trained on ImageNet. We found that although WN achieves better training accuracy, the final test accuracy is significantly lower ($\approx 6\%$) than that of BN. This result demonstrates the surprising strength of the BN regularization effect which we were unable to compensate for using standard regularization techniques like dropout and weight decay. We also found that training of deep networks with WN algorithms is significantly less stable compared to BN, limiting their practical applications.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.