Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Challenging Neural Dialogue Models with Natural Data: Memory Networks Fail on Incremental Phenomena (1709.07840v1)

Published 22 Sep 2017 in cs.CL

Abstract: Natural, spontaneous dialogue proceeds incrementally on a word-by-word basis; and it contains many sorts of disfluency such as mid-utterance/sentence hesitations, interruptions, and self-corrections. But training data for machine learning approaches to dialogue processing is often either cleaned-up or wholly synthetic in order to avoid such phenomena. The question then arises of how well systems trained on such clean data generalise to real spontaneous dialogue, or indeed whether they are trainable at all on naturally occurring dialogue data. To answer this question, we created a new corpus called bAbI+ by systematically adding natural spontaneous incremental dialogue phenomena such as restarts and self-corrections to the Facebook AI Research's bAbI dialogues dataset. We then explore the performance of a state-of-the-art retrieval model, MemN2N, on this more natural dataset. Results show that the semantic accuracy of the MemN2N model drops drastically; and that although it is in principle able to learn to process the constructions in bAbI+, it needs an impractical amount of training data to do so. Finally, we go on to show that an incremental, semantic parser -- DyLan -- shows 100% semantic accuracy on both bAbI and bAbI+, highlighting the generalisation properties of linguistically informed dialogue models.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.