Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Probabilistic Synchronous Parallel (1709.07772v2)

Published 22 Sep 2017 in cs.DC and cs.LG

Abstract: Most machine learning and deep neural network algorithms rely on certain iterative algorithms to optimise their utility/cost functions, e.g. Stochastic Gradient Descent. In distributed learning, the networked nodes have to work collaboratively to update the model parameters, and the way how they proceed is referred to as synchronous parallel design (or barrier control). Synchronous parallel protocol is the building block of any distributed learning framework, and its design has direct impact on the performance and scalability of the system. In this paper, we propose a new barrier control technique - Probabilistic Synchronous Parallel (PSP). Com- paring to the previous Bulk Synchronous Parallel (BSP), Stale Synchronous Parallel (SSP), and (Asynchronous Parallel) ASP, the proposed solution e ectively improves both the convergence speed and the scalability of the SGD algorithm by introducing a sampling primitive into the system. Moreover, we also show that the sampling primitive can be applied atop of the existing barrier control mechanisms to derive fully distributed PSP-based synchronous parallel. We not only provide a thorough theoretical analysis1 on the convergence of PSP-based SGD algorithm, but also implement a full-featured distributed learning framework called Actor and perform intensive evaluation atop of it.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.