Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Neural Networks for Predicting Algorithm Runtime Distributions (1709.07615v3)

Published 22 Sep 2017 in cs.AI and cs.LG

Abstract: Many state-of-the-art algorithms for solving hard combinatorial problems in AI include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algorithm selection, portfolios, and randomized restarts. Previous work has shown that machine learning can be used to individually predict mean, median and variance of RTDs. To establish a new state-of-the-art in predicting RTDs, we demonstrate that the parameters of an RTD should be learned jointly and that neural networks can do this well by directly optimizing the likelihood of an RTD given runtime observations. In an empirical study involving five algorithms for SAT solving and AI planning, we show that neural networks predict the true RTDs of unseen instances better than previous methods, and can even do so when only few runtime observations are available per training instance.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube