Papers
Topics
Authors
Recent
2000 character limit reached

Large Vocabulary Automatic Chord Estimation Using Deep Neural Nets: Design Framework, System Variations and Limitations (1709.07153v2)

Published 21 Sep 2017 in cs.SD

Abstract: In this paper, we propose a new system design framework for large vocabulary automatic chord estimation. Our approach is based on an integration of traditional sequence segmentation processes and deep learning chord classification techniques. We systematically explore the design space of the proposed framework for a range of parameters, namely deep neural nets, network configurations, input feature representations, segment tiling schemes, and training data sizes. Experimental results show that among the three proposed deep neural nets and a baseline model, the recurrent neural network based system has the best average chord quality accuracy that significantly outperforms the other considered models. Furthermore, our bias-variance analysis has identified a glass ceiling as a potential hindrance to future improvements of large vocabulary automatic chord estimation systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.