Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Think Globally, Embed Locally --- Locally Linear Meta-embedding of Words (1709.06671v1)

Published 19 Sep 2017 in cs.CL, cs.LG, and cs.NE

Abstract: Distributed word embeddings have shown superior performances in numerous NLP tasks. However, their performances vary significantly across different tasks, implying that the word embeddings learnt by those methods capture complementary aspects of lexical semantics. Therefore, we believe that it is important to combine the existing word embeddings to produce more accurate and complete \emph{meta-embeddings} of words. For this purpose, we propose an unsupervised locally linear meta-embedding learning method that takes pre-trained word embeddings as the input, and produces more accurate meta embeddings. Unlike previously proposed meta-embedding learning methods that learn a global projection over all words in a vocabulary, our proposed method is sensitive to the differences in local neighbourhoods of the individual source word embeddings. Moreover, we show that vector concatenation, a previously proposed highly competitive baseline approach for integrating word embeddings, can be derived as a special case of the proposed method. Experimental results on semantic similarity, word analogy, relation classification, and short-text classification tasks show that our meta-embeddings to significantly outperform prior methods in several benchmark datasets, establishing a new state of the art for meta-embeddings.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube