Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Summable Reparameterizations of Wasserstein Critics in the One-Dimensional Setting (1709.06533v1)

Published 19 Sep 2017 in cs.LG, cs.AI, and stat.ML

Abstract: Generative adversarial networks (GANs) are an exciting alternative to algorithms for solving density estimation problems---using data to assess how likely samples are to be drawn from the same distribution. Instead of explicitly computing these probabilities, GANs learn a generator that can match the given probabilistic source. This paper looks particularly at this matching capability in the context of problems with one-dimensional outputs. We identify a class of function decompositions with properties that make them well suited to the critic role in a leading approach to GANs known as Wasserstein GANs. We show that Taylor and Fourier series decompositions belong to our class, provide examples of these critics outperforming standard GAN approaches, and suggest how they can be scaled to higher dimensional problems in the future.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.