Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bias Correction with Jackknife, Bootstrap, and Taylor Series (1709.06183v4)

Published 18 Sep 2017 in math.ST, cs.IT, cs.LG, math.IT, and stat.TH

Abstract: We analyze bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating $f(p)$, where $f \in C[0,1]$ is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in delete-$d$ jackknife, different values of $d$ may lead to drastically different behaviors in jackknife. We show that in the binomial model, iterating the bootstrap bias correction infinitely many times may lead to divergence of bias and variance, and demonstrate that the bias properties of the bootstrap bias corrected estimator after $r-1$ rounds are of the same order as that of the $r$-jackknife estimator if a bounded coefficients condition is satisfied.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)