Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Powered Conditional Independence Test (1709.06138v1)

Published 18 Sep 2017 in stat.ML, cs.AI, cs.IT, cs.LG, and math.IT

Abstract: We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution $f(x,y,z)$ of continuous random vectors $X,Y$ and $Z,$ we determine whether $X \perp Y | Z$. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifiers like gradient-boosted trees and deep neural networks. These models can handle complex probability distributions and allow us to perform significantly better compared to the prior state of the art, for high-dimensional CI testing. The main technical challenge in the classification problem is the need for samples from the conditional product distribution $f{CI}(x,y,z) = f(x|z)f(y|z)f(z)$ -- the joint distribution if and only if $X \perp Y | Z.$ -- when given access only to i.i.d. samples from the true joint distribution $f(x,y,z)$. To tackle this problem we propose a novel nearest neighbor bootstrap procedure and theoretically show that our generated samples are indeed close to $f{CI}$ in terms of total variational distance. We then develop theoretical results regarding the generalization bounds for classification for our problem, which translate into error bounds for CI testing. We provide a novel analysis of Rademacher type classification bounds in the presence of non-i.i.d near-independent samples. We empirically validate the performance of our algorithm on simulated and real datasets and show performance gains over previous methods.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com