Papers
Topics
Authors
Recent
2000 character limit reached

Une véritable approche $\ell_0$ pour l'apprentissage de dictionnaire (1709.05937v1)

Published 12 Sep 2017 in cs.CV and eess.IV

Abstract: Sparse representation learning has recently gained a great success in signal and image processing, thanks to recent advances in dictionary learning. To this end, the $\ell_0$-norm is often used to control the sparsity level. Nevertheless, optimization problems based on the $\ell_0$-norm are non-convex and NP-hard. For these reasons, relaxation techniques have been attracting much attention of researchers, by priorly targeting approximation solutions (e.g. $\ell_1$-norm, pursuit strategies). On the contrary, this paper considers the exact $\ell_0$-norm optimization problem and proves that it can be solved effectively, despite of its complexity. The proposed method reformulates the problem as a Mixed-Integer Quadratic Program (MIQP) and gets the global optimal solution by applying existing optimization software. Because the main difficulty of this approach is its computational time, two techniques are introduced that improve the computational speed. Finally, our method is applied to image denoising which shows its feasibility and relevance compared to the state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.