Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Restricted Isometry of the Columnwise Khatri-Rao Product (1709.05789v3)

Published 18 Sep 2017 in cs.IT and math.IT

Abstract: The columnwise Khatri-Rao product of two matrices is an important matrix type, reprising its role as a structured sensing matrix in many fundamental linear inverse problems. Robust signal recovery in such inverse problems is often contingent on proving the restricted isometry property (RIP) of a certain system matrix expressible as a Khatri-Rao product of two matrices. In this work, we analyze the RIP of a generic columnwise Khatri-Rao product matrix by deriving two upper bounds for its $k{\text{th}}$ order Restricted Isometry Constant ($k$-RIC) for different values of $k$. The first RIC bound is computed in terms of the individual RICs of the input matrices participating in the Khatri-Rao product. The second RIC bound is probabilistic, and is specified in terms of the input matrix dimensions. We show that the Khatri-Rao product of a pair of $m \times n$ sized random matrices comprising independent and identically distributed subgaussian entries satisfies $k$-RIP with arbitrarily high probability, provided $m$ exceeds $O(k \log n)$. Our RIC bounds confirm that the Khatri-Rao product exhibits stronger restricted isometry compared to its constituent matrices for the same RIP order. The proposed RIC bounds are potentially useful in the sample complexity analysis of several sparse recovery problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube