Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Where to Focus: Deep Attention-based Spatially Recurrent Bilinear Networks for Fine-Grained Visual Recognition (1709.05769v1)

Published 18 Sep 2017 in cs.CV

Abstract: Fine-grained visual recognition typically depends on modeling subtle difference from object parts. However, these parts often exhibit dramatic visual variations such as occlusions, viewpoints, and spatial transformations, making it hard to detect. In this paper, we present a novel attention-based model to automatically, selectively and accurately focus on critical object regions with higher importance against appearance variations. Given an image, two different Convolutional Neural Networks (CNNs) are constructed, where the outputs of two CNNs are correlated through bilinear pooling to simultaneously focus on discriminative regions and extract relevant features. To capture spatial distributions among the local regions with visual attention, soft attention based spatial Long-Short Term Memory units (LSTMs) are incorporated to realize spatially recurrent yet visually selective over local input patterns. All the above intuitions equip our network with the following novel model: two-stream CNN layers, bilinear pooling layer, spatial recurrent layer with location attention are jointly trained via an end-to-end fashion to serve as the part detector and feature extractor, whereby relevant features are localized and extracted attentively. We show the significance of our network against two well-known visual recognition tasks: fine-grained image classification and person re-identification.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)