Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Building a Knowledge Base of Monetary Transactions from a News Collection (1709.05743v1)

Published 18 Sep 2017 in cs.IR and cs.CL

Abstract: We address the problem of extracting structured representations of economic events from a large corpus of news articles, using a combination of natural language processing and machine learning techniques. The developed techniques allow for semi-automatic population of a financial knowledge base, which, in turn, may be used to support a range of data mining and exploration tasks. The key challenge we face in this domain is that the same event is often reported multiple times, with varying correctness of details. We address this challenge by first collecting all information pertinent to a given event from the entire corpus, then considering all possible representations of the event, and finally, using a supervised learning method, to rank these representations by the associated confidence scores. A main innovative element of our approach is that it jointly extracts and stores all attributes of the event as a single representation (quintuple). Using a purpose-built test set we demonstrate that our supervised learning approach can achieve 25% improvement in F1-score over baseline methods that consider the earliest, the latest or the most frequent reporting of the event.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.