Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Grade Prediction with Temporal Course-wise Influence (1709.05433v1)

Published 15 Sep 2017 in cs.LG

Abstract: There is a critical need to develop new educational technology applications that analyze the data collected by universities to ensure that students graduate in a timely fashion (4 to 6 years); and they are well prepared for jobs in their respective fields of study. In this paper, we present a novel approach for analyzing historical educational records from a large, public university to perform next-term grade prediction; i.e., to estimate the grades that a student will get in a course that he/she will enroll in the next term. Accurate next-term grade prediction holds the promise for better student degree planning, personalized advising and automated interventions to ensure that students stay on track in their chosen degree program and graduate on time. We present a factorization-based approach called Matrix Factorization with Temporal Course-wise Influence that incorporates course-wise influence effects and temporal effects for grade prediction. In this model, students and courses are represented in a latent "knowledge" space. The grade of a student on a course is modeled as the similarity of their latent representation in the "knowledge" space. Course-wise influence is considered as an additional factor in the grade prediction. Our experimental results show that the proposed method outperforms several baseline approaches and infer meaningful patterns between pairs of courses within academic programs.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.