Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fast OLAP Query Execution in Main Memory on Large Data in a Cluster (1709.05183v1)

Published 15 Sep 2017 in cs.DB and cs.DC

Abstract: Main memory column-stores have proven to be efficient for processing analytical queries. Still, there has been much less work in the context of clusters. Using only a single machine poses several restrictions: Processing power and data volume are bounded to the number of cores and main memory fitting on one tightly coupled system. To enable the processing of larger data sets, switching to a cluster becomes necessary. In this work, we explore techniques for efficient execution of analytical SQL queries on large amounts of data in a parallel database cluster while making maximal use of the available hardware. This includes precompiled query plans for efficient CPU utilization, full parallelization on single nodes and across the cluster, and efficient inter-node communication. We implement all features in a prototype for running a subset of TPC-H benchmark queries. We evaluate our implementation using a 128 node cluster running TPC-H queries with 30 000 gigabyte of uncompressed data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.