On Coordinate Minimization of Convex Piecewise-Affine Functions (1709.04989v1)
Abstract: A popular class of algorithms to optimize the dual LP relaxation of the discrete energy minimization problem (a.k.a.\ MAP inference in graphical models or valued constraint satisfaction) are convergent message-passing algorithms, such as max-sum diffusion, TRW-S, MPLP and SRMP. These algorithms are successful in practice, despite the fact that they are a version of coordinate minimization applied to a convex piecewise-affine function, which is not guaranteed to converge to a global minimizer. These algorithms converge only to a local minimizer, characterized by local consistency known from constraint programming. We generalize max-sum diffusion to a version of coordinate minimization applicable to an arbitrary convex piecewise-affine function, which converges to a local consistency condition. This condition can be seen as the sign relaxation of the global optimality condition.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.